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Calculations of the motion of non-uniform
shock waves

By JAN ROSCISZEWSKI

Pierce Hall, Harvard University
(Received 31 March 1959 and in revised form 30 January 1960)

Problems of the propagation of shock waves and strong detonation waves through
ducts of variable cross-section and ducts with porous walls, and the interaction
of a rarefaction wave with a shock and a contact surface in one-dimensional
unsteady, or two-dimensional steady, flow are solved using a simple rule. Tables
enclosed in this paper permit efficient calculation of several problems of non-
uniform shock motion.

1. Introduction

The aim of this paper is to give a simple method of analysing various situations
involving the motion of non-uniform shock waves. The method is a modified
form of the characteristic rule given by Whitham (1958), or the methods given
by Chisnell (1957) and the author (1958). The rule developed in this paper enables
one to treat many cases of the motion of non-uniform shock waves with different
boundary conditions. Whitham’s characteristic rule is a special case of this
method when a particular kind of boundary condition obtains.

The problems treated represent boundary-value problems for a system of
partial differential equations, in which one boundary condition is given on one
line, and on another unknown line (the shock locus) a second boundary condition
is defined by compatibility equations. The rule of this paper enables the behaviour
of the shock wave to be calculated without solving the system of partial differ-
ential equations governing the flow.

Some of the problems discussed below have been solved by the use of methods
differing from the present one. Some very practicable step-by-step methods for
difference equations are discussed by Courant & Friedrichs (1948). The problem
of the propagation of shock waves through a duct of variable cross-section was
solved by Chisnell (1957), for the case when the gas in front of the shock is at rest.
Another method of solving this problem was given by the author (1958). In the
present paper, shock-wave propagation through ducts of variable cross-section,
when a given non-uniform steady flow exists ahead of the shock wave, is
discussed.

The interaction of a simple wave and a shock wave was solved in a closed form
by Friedrichs (1948) for the case of weak shocks where the entropy changes
may be neglected. The influence, of a slow perturbation of the otherwise uniform
piston motion on a shock wave, was discussed by Gundersen (1958). The present
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method gives good results for arbitrary shock strength and arbitrary piston
motion.

A similar procedure applied to the case of plane hypersonic flow around a
profile gives better results than the shock expansion method.*

2. General relations for unsteady non-isentropic flow in ducts

The system of equations governing unsteady non-isentropic flow behind a
shock wave in a duct can be written in the characteristic form
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a denotes the velocity of sound, V the velocity of flow, @ and £ the curvilinear
characteristic co-ordinates, S the specific entropy, and 4 the cross-section area

S

x
Figure 1. The boundary-value problem for the system of equations (2.1) and (2.2).

measured along plane, cylindrical or spherical surfaces for the cases of approxi-
mately cylindrical, wedge-shaped or conical ducts, respectively.

D @ e

n-at e
is the substantial derivative, and ¥ and G are coefficients which express the
entropy change of an element of the gas and the cross-outflow influence on the
mass and momentum equations.} The boundary-value problem for the above
system of differential equations can be set as follows. In the (x, ¢)-plane, suppose
the line I, not a characteristic, is given (see figure 1) and that on this line values

* In an as yet unpublished paper the author has applied similar methods to the cal-
culation of the shock-wave shape and pressure distribution for hypersonic flow around
bodies of revolution.

T See §5.
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r=r.(t), S=S.(t) and 4 = A;(x) are known. On the right of a second un-
known line (the shock wave) the state of the gas is prescribed by V; = V (x),
a; = a,(x) and 8, = S(x). Along this line compatibility conditions must be
fulfilled. These conditions connect the parameters ahead of the shock wave
(suffix 1) with parameters on the back of the shock wave (suffix W), and can be
written in the form

- 2 1 —
7, = k+1(W _W;)JFVI, (2.3)
_ 1 — 1
aW=mA/[2(k——1)(kW%—7)+6k—k2—l], (2.4)
74
Tw Ef(WvVl’al) = (aW + ;V) a5 (2.5)
2k —, k-1 (k—l)W%+2]k}_
S = W) = o n{ [ 2o W1 | ] -5 eo
where W, = Ua_lVl, VW=%~;’, etc., (2.7)

and U is the velocity of propagation of the shock wave.
We suppose that A = A(x). Then equation (2.1) can be written in the form
o  a o8 4+ 0 Vv 9lnd
oo 2¢,(k—1)0a  2(V+a) 0o
Integrating equation (2.8) along a-characteristics (see figure 1) and expressing
the values on the shock wave by equations (2.5) and (2.6), we obtain*

= Fla,V,a,p). (2.8)

T P71, 81 a is
Jf(Wy, l’al)_rL*J.s,, m

mdy oV
11
+f1nAL (V+a)dl nd = f F(a,V,z,t)de,

where the suffix L refers to values of the parameters on the L-line. We now apply
this expression to two neighbouring characteristics I and IT (see figure 1). On
subtracting these expressions, we obtain in the limit as characteristic I approaches
characteristic 11,1

’ b=d T ' 7 ¥ ! YIT a
le( Wl’ I’l’ al) dWl +fV1( Wl’ I’l? al) dI/l +fa;( Wl’ I’l’ al) dal - er - [2(1‘7 _ lﬁ‘]
W

x (S, + ¢, (W, S) AW, ]+ [#W]LdsL - [—r_il)— da] [H(Wy,8;) — 8]
D p m

aV aV aV Ay
a1l e o) = P
—Frda;, +[dF], (o —ay),

where the suffix m refers to the mean value in the interval considered.

0

) f " 8:5’ df = 0, etc., because dff = 0 along «-characteristics.
2z

1 From equation (2.6) we have ¢{gl(W1, Sy =1

22-2
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For the case when the variations of the flow behind the shock wave are small
(the linearized case), all values can be written as 4 = A; +€4, a = ar +¢,, ete.,
where €, € A}, ¢, < ar, etc. We can then omit in the above equation as small
quantities of the second order all the terms in which the suffix m appears. Then
we obtain

ff%’x( Wls I/:la al) d Wl +f;'1( Wla I/1: al) dVl +f(;.1( Wl’ Ill: al) dal

a , — — (ZV
-5z, 125 s P S0+ 55t din gy~ By

a aV
—drp— [mﬁ]ﬂsﬁ [m]LdlnAL—FLdaL. (2.9)
For the general case we may use the formula (2.9) as an approximation.

The same procedure can be carried out with the formula analogous to (2.8)
for the f-characteristics. In this manner we could obtain in addition the value
of s;, = ap/(k— 1) — LV, along the L-line. The main difficulty is to find the points
of intersection of corresponding characteristics with the W-line and the L-line.
For this purpose an additional assumption is necessary (see § 6 B below). Often,
instead of 7. (¢), the value of V;(¢) (for example, the piston velocity) is given along
the L-curve. In this case, the value of r,(t) depends on s (t), which can be found
only if the distribution of r;(t) is known. The situation is now more complicated.
This kind of boundary condition occurs in the problem of variable piston motion
behind the shock wave, when the reflected wave reaches the piston. This problem
was solved by Gundersen (1958), but only in the linearized approximation for
small variations of the piston velocity when all the flow field can be found in
closed form.*

In the special case of boundary conditions such that r; = const., Sy = const.,
A; = Ay = const., we obtain from (2.9) Whitham’s characteristic rule. In the
case of F = 0 and constant state ahead of the shock wave, this rule can be written
in the form

AU — g LV_] Ay _
fudU 5o, (k—T) ¢ydU+ [2(V+a) Wdln 4, 0.
Whitham obtained this rule in a different way: he made use of the equation (2.1),
in which he replaced derivatives in the characteristic direction by derivatives
in the shock-wave direction {0/0y = 0/0t+ U(0/ox)}. He remarks that the slope
of the x-characteristics is close to that of the shock-wave line (in the linearized
approximation, they are the same).

The same result can be obtained (see Chisnell 1957 and Roéciszewski 1958) by
solving first the linearized case for small shock-wave velocity variations, and
then, for the case of arbitrarily variable shock-wave velocity, changing the
parameter in the linearized solution. The quasi-linearized solution obtained in

* In the general case it is necessary to make use of the expression analogous to (2.9)
for pB-characteristics. Unknown pg-characteristics could be replaced by characteristics
taken from the simple wave solution. In the analogous case discussed in the author’s
unpublished work dealing with hypersonic flow around bodies of revolution, a similar
method shows good accuracy.
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this way is, in fact, the result of applying a series of local linearized solutions to
the case where finite changes in shock-wave velocity takes place.

The formula (2.9) will be applied below to many different cases of non-uniform
shock-wave motion. The results will be compared diagrammatically with finite
difference calculations obtained from the method of characteristics; these com-
parisons display the surprisingly good accuracy of the present method.

A similar boundary-value problem will later be formulated for plane steady
supersonic flow (see §8).

3. Shock-wave propagation in a duct of non-uniform cross-section

We shall now apply the rule to the case of shock-wave motion in a tube in
which the cross-section is initially constant and then varies, and for which there
is a given constant state ahead of the shock wave (see figure 2). In particular,
shock-wave propagation in ducts of variable cross-section, when the gas ahead of
the shock wave is in steady motion or at rest with a variable temperature field,
can be considered.

We suppose that A = A(x) and neglect the heat exchange and surface friction
(F = 0). In the case considered, along the t-axis we have r = const. and 4 = 4,
(see figure 2). Taking the ¢-axis as an L-line, we have dr; = 0,d4; = 0,dSy = 0.
Now taking a,, ¥;, S; as variable, and dividing equation (2.9) by dx, we obtain,
using equation (2.7),

au WA (v 7 Fw— 3\ da, ay  dS,
‘&‘x“(l‘ ) (Vl U+~ )Eﬁz(k—l)cpzvﬁi

Vwaw  dln(A/A,)

TN +ay)  de (3.1)
_p. wk_
where N=R -1y’ (3.2)
) 1 [2kW, +(2/ W3 1
B = TaVood) = |t ) (3.3
- 1 4w, 4
E = ¢, (W1, 8,) L (3.4)

¢y 2kWi-k+1 Wi(k—1)Wi+2]

For the given state ahead of the shock wave, dV,/dx, da,/dx, and dS,/dx are
known functions of z, and the equation (3.1) is a first-order differential equation
for U = U(x). In general this equation can be quite easily solved numerically;
then we obtain the unknown shock wave without having to solve the partial
differential equations. In the special case of an approximately cylindrical duct
and small variations of the values of the flow parameters ahead of the shock wave,
all the coefficients of equation (3.1) can be taken, according to the linearized
approximation, as constant. Therefore, a closed-form solution can be obtained
for the shock-wave velocity change and the entire field on the back of the shock
wave. The discussion of this solution was given in the author’s previous work
(Roseiszewski 1958).
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In the more general case when the time-dependent field ahead of the shock
wave is given [V, = ¥j(,t), @, = a,(x,t), 8§, = S,(x,1)] and, as before, dr;, = 0,
dA; = 0, dS;, = 0, in place of d/dx on the right-hand side of equation (3.1) we
must put d/éx + (1/U) (9/0t). We then obtain the equation for the shock-wave

velocity in the form
aU cdx
‘a’; - .F(U,x,t) = F(U,x,fo ﬁ) .

This equation can also easily be solved numerically.
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Ficume 2. Propagation of a shock wave through a duct of variable cross-section, (a) sub-
sonic flow behind the shock wave, (b) supersonic flow behind the shock wave.

The solution of the problem when time-dependent boundary conditions on
curve L are given [r; = r.(t), A = A.(t)] is also possible, and it is not very
complicated when the curve L lies outside the domain of dependence bounded
by the A-characteristic and the shock wave, i.e. when the condition on the
L-curve does not depend on the shock-wave motion.
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In the special case when @, = @4 = const., V] = 0, §; = const., using equations
(2.3)—(2.6) we obtain from equation (3.1),

A

In

Ay~

2(k+1)

E+1 }

U
_fv., {J{z(k— 1) (k02— (1)U2)]+ 6k — k2 — 1}+ U-(/0)

x {R—-:Z(T—l—)}d[_], (3.5)

where R and E are functions of U given by equations (3.3) and (3.4).

1-2
1-3
1-4
1-5
1-6
1.7
1-8
1-9
2-0
2-1
2-2
2-3
2-4
2-5
2-6
2.7
2-8
2-9
3-0
3-1
3-2
3-3
3-4

% _
—f {}aU
2
—4:514
—3-563
—2-612
—1-999
—1-490
—1-053
—0-668
—0-322
0-000
0-294
0-587
0-845
1102
1-330
1-559
1-767
1-974
2-160
2-356
2-537
2-707
2-870
3-033

U
35

3-7
3-8
3-9
40
41
4-2
4-3
4-4
4-5
4:6
4.7
48
4-9
50
51
52
5-3
54
55
56
5-7

U — _
- f (ydU T
2

3-186 58
3-338 59
3-481 60
3-623 61
3-757 6-2
3-891 63
4-017 6-4
4144 65
4-265 66
4-385 67
4-501 68
4616 69
4727 7-0
4-838 71
4944 7-2
5-050 7-3
5-152 7-4
5-254 7-5
5-352 7-6
5-449 77
5-543 78
5-636 79
5727 80

TaBLE 1

U _
—f {}aU

2
5-817
5-854
5-991
6-076
6-160
6-242
6-323
6-402
6-482
6-559
6-635
6-710
6-785
6-858
6-930
7-001
7-071
7-140
7-208
7-275
7-341
7-407
7-472

In the limiting case when U — co we obtain the asymptotic formula

md o[22
", T WE=1T TR

(3.6)

In fact, equation (3.5) is the Chisnell answer presented in another form. Some
numerical differences between Chisnell’s tables and present formula are, however,
found (see the converging cylindrical wave calculation). Values of the integral
in (3.5) are given in table 1 for k = 1-4.

Equation (3.4) enables us to examine the influence of entropy changes on
shock-wave motion. The coefficient depends on

1 d(Sy —5,)

dw,

:E,
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where E given by equation (3.4) expresses the entropy change influence. When
W, = 1 (very weak shock wave) and W, = oo (very strong shock wave) E vanishes.
This means that entropy changes for hypersonic shock motion can be neglected.
Table 2 gives values of E as a function of W, for k = 1-4.

The results of calculations by the use of Table 1 are compared with step-by-
step calculations* applied to the basic differential equations for various duct
shapes and various initial shock strengths (figures 3—-10). In special cases these

w 0 15 2 3 4 5 6 8 10 15 20 0
E 0 0097 0185 0-246 0-241 0-221 0-198 0-161 0-123 0-092 0-0714 O

TABLE 2
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Ficure 3. Comparison of the present method with step-by-step calculations by the
method of characteristics for the case of shock-wave propagation through a duct of vary-
ing cross-section area given by A/A, = e¥#/=) (divergent duct) and initial shock strengths
(a) Uyfay =5 and (b) Uy/a, = 3. The shock is assumed plane. ————, Step-by-step calcula-
tion; , present method.

* This calculation was based on the method of characteristics. The accuracy was checked
by taking some mean characteristics which give the errors lying within the limits of
accuracy of the wave diagram calculations.
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results are compared (figure 9) with Payne’s (1957) calculations for a cylindrical
convergent wave. In this case, because of other boundary conditions (in Payne’s
work V(1,¢) £ const.) Payne’s results differ from those given by the present
method and from those given by finite difference calculations by the method of
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Fiaurr 4. Comparison of the present method with calculations by the method of charac-
teristics for the case of shock-wave propagation through a duct varying cross-section area
given by A/A4, = e?=/*) (divergent duct) and initial shock strength U,/a, = 7. The com-
parigon is made for both a plane and spherical shock wave, originating at z = 0, for
x/ry > 0-1. ————, Step-by-step calculations; , present method.

16
.
P o= ==
14 bl sy P T
QO
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1-0 . £
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x/r,

Fiaure 5. Comparison of the present method with calculations by the method of charac-
teristics for the case of shock-wave propagation through a duct with 4/4, = ¢+#) (diver-
gent duct) and initial shock strength Ugyla,=15. —-——, Step-by-step calculations;
, present theory.




346 Jan Rosdciszewskt

characteristics. The results are not strictly insensitive to the initial conditions,
see Whitham (1958). Chisnell’s tables show some disagreement with the present
tables, and they give results very close to Payne’s calculations for different

33+ P

T
N
N

32
31} 4

30+ o

Ula,

29

28

271

26

25 1 1 ! L L 1 ! 1 ! 1 1 i
01 02 03 04 05 06 07 08 09 10 11 12

z [,
Figure 6. Comparison of the present method with calculations by the method of charac-

A 2
teristics for the case of shock wave propagation through a duct withz = exp [ - (E + ;—,)]

0 Ly 4o
(convergent duct) and initial shock strength Ugy/a, = 2-5. ————, Step-by-step calculations;
, present method.

19

! 1
1 12 13

§ 4 i 1 1 1 I

1 I 1
0 01 02 03 04 05 06 07 08 09 10 1
xfa,

13

Figure 7. Comparison of the present method with calculations by the method of charac-

A 2
teristics for the case of shock-wave propagation through a duct with 1= oxP [ - (E + %):I
0 Zo 0.

(convergent duct) and initial shock strength Uy/a, = 1-3. O, Step-by-step calculations;
X , present theory.

boundary conditions. For other cases calculated in this paper, Chisnell’s tables
also show some deviations. Results of the comparison of the present method with
experimental results and calculations by Hertzberg & Kantrowitz (1950) are
given in figure 10.
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4, Propagation of strong detonation wave through ducts of non-
uniform cross-section

Here we shall be concerned with the propagation of a strong detonation wave,
i.e. the detonation wave described by the points on the Hugoniot curve lying
above the Chapman-Jouguet point (see Courant & Friedrichs 1948). Such a
detonation wave can be obtained by additional compression behind the detona-
tion wave, for example, by piston motion or by the propagation of the Chapman-—

20

18 \\

) N

Ula,
/

15

14

13

0 0-1 02 03 04 05 06 o1 08
z/z,
Ficure 8. Comparison of the present method with calculations by the method of charac-
teristics for the case of a very strong shock wave (Ugy/a, = 20) propagating through a duct

of variable cross-section 4/4, = ¢%*/#d, The gas is treated as ideal with k = 1-4. @, Step-
by-step calculations; O, present method.

Jouguet detonation wave through a duct of suddenly convergent cross-section.
We assume the strong detonation wave to be propagated through a duct of
initially constant cross-section, which at some point changes into a duct with
variable cross-section. The gas ahead of the detonation wave is assumed to be
at rest with a constant velocity of sound.

In a divergent duct the velocity of a detonation wave can be decreased only
to that corresponding to the Chapman-Jouguet wave. The only difference
between the solution of the previous case and the present one is in the different
compadtibility equations for shock and detonation waves.

We assume different values of k = c,/c, in front (suffix 1) and at the back
(suffix W) of the detonation wave.
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Figure 9. Comparison of the present method with calculations by the method of charac-
teristics (assuming V(1, £) = const.) and Payne’s calculations with different boundary

conditions (V(1, t) # const.). —-—-——, , Step-by-step calculations with boundary condition
V(1,t) = const.; ————, finite difference calculations by Payne V(l,?) # const.; ,
present method ; —-—, Chisnell (published in Payne’s work).
b
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Fraurk 10. Comparison of the present method with Hertzberg & Kantrowitz’s experi-
mental curve and their calculations by the method of characteristics. O, Experimental
points (Hertzberg—Kantrowitz); ————, finite difference calculations (Hertzberg~Kantro-
witz); , present method.
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The equations of conservation of mass, momentum and energy (see Courant
& Friedrichs 1948) give

Pt (T 20 (02 0) a0 he D)

(4.1)
where U = Ujayand V = W, /a,; @ is the heat released by the combustion process.
Also,

a=A/{k2(t7—V)(I7+ﬁ)}, (4.2)

1
bl - 4.3
LR (4.3)
where @ = ay/a,,.

60

10 2:0 30 40 50 6-0

ETEN

Figure 11. Comparison of the present method with calculations by the method of charac-
teristics for the case of propagation of a strong detonation wave in a duct of cross-section

given by A/4, = eX=ls), with k, = 1-4, k, = 1-3 and Q/aj = 28-3. O, Present method; ,
step-by-step calculations.

From equation (2.9) (dV; = da, = dS; = 0) we obtain

wik o [T AT, 1 dT)
A, Ju, Va \2dU k,—1\oU ' oVdU

_* [Qg—-f—@d—?-f—@(—az-f—@ﬂ)]}dﬁ (4.4)
2(ky—1)c, [2U 2VdU 0a \oU aVdU S
where the derivatives in equation (4.4) can be calculated by the use of equations
(4.1), (4.2) and (4.3).

Comparison of the calculations by the use of the present method and step-
by-step calculations are given in figure 11 for k, = 1-4, k, = 1-3 and Q/a} = 28-9.
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5. Shock-wave propagation through a duct with porous walls

In this section we consider the shock-wave attenuation due to the cross-
outflow through porous walls of the duct. We take a cylindrical duct and we
assume the cross mass flow 7d,lpv to be small in comparison with pV A4, where v
is the cross-flow velocity, 7 is the ratio of the area of the pores to the area of
the wall, and 7 = vy.

(a) / '
-$
9

Shock wave

.’__U V=10
® sla
i\
Al
sle 8/
L] [N /

\\

P. ——
F1aure 12. Flow induced by shock-wave propagation through a duet with
porous walls (<€ 1). (a) The case V°< a®; (b) the case V0> al.

We apply the basic mechanical equations to the ideal flow through the duct
with the porous wall (figure 12). We assume all parameters to be constant in the
given cross-section. The continuity equation is

211 _ a TI
piTido—puVisdo=rd [ " pods = 7 [ " pdods,
xy

Iy

-

or for z; - xy; Dp+ oV 4pp

Dt P T T dy

For the momentum equation, we assume that the cross-stream has no momen-
tum in the direction of the axis of the tube. Then we have

(5.1)

o (*u
(Pr—pn) do+p1 Vido—pu Virde = é“tf pVAydz,
o5
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or, using equation (5.1) for z; - z;;, we obtain

DV Dy 1 19p 4Vv
Dt "pox  d, -
The energy equation is

Vi, k pr Vh k py " oot p)
P1V11(2 +k IE)A"_pHVI ( ) +k—1pH)A°_ﬂd°f pU —2—+—,—) dz

k
_ 0 fix (P2 1 1_;)
_9?[A°L 'O(?Jr —1p

or, using equations (5.1) and (5.2) for z;; - z;, we get

108 _
Cp Dt

_Z [(k—-l)M2 ka 102] (5.3)

We shall calculate the velocity of the cross-flow by assuming quasi-steady flow.
This is based on the fact that due to a sudden change in the cross-section the local
derivatives (in the equation of motion), are small in comparison with the con-
vective terms. Then we apply the Bernoulli equation and assume the cross-flow
to be isentropic

e =

where p, = const. is the outside pressure, p = p(x,) is the pressure in the duct,
and ¢ is the loss coefficient.
The pressure in this formula can be calculated from

2k/(k—1) S8
L= (fg) eXp( 2 ) (5.5)

P2 cp —Cy

Taking into account the three equations of motion (5.1), (5.2), (5.3) and equa-
tion (5.4) we find the coefficients in equations (2.1) and (2.2) which express the
entropy change and the cross-mass flow influence

et v B e e R M

(5.6)

S L e

(5.7)
where M = V/a.
We obtain from (2.9), where we substitute dx;, = 0 (the t-axis is taken as the
L-curve) and

dx
Vp +ay’

/5 : Big [ra= 58
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By

where B(O) = .
s [

E and R are given by (3.3) and (3.4), respectively. The integral of the left-hand
side of equation (5.8) is given in table 3 for k = 1.4 and { = 1.

In figure 13 a comparison of the present method with the numerical method
of characteristics is given for 9 = 0-1 and U, = 4. In this case the numerical
method was not very accurate.

U
o [l N o [T

o, B(U) o, B(U) U, B(U)
1-2 — 2775 36 0-755 6-0 1-295
1-4 —0-900 3-8 0-814 6-2 1-328
1-6 —0-425 4-0 0-870 6-4 1-360
1-8 —0-172 4.2 0-922 6-6 1-391
2:0 0-000 44 0-972 6-8 1-421
2-2 0-144 4-6 1-019 7-0 1-450
2:4 0-264 4-8 1-064 7-2 1-478
2-6 0-367 50 1-107 7-4 1-506
2-8 0-460 5-2 1-148 7-6 1-532
3:0 0-544 54 1-187 7-8 1-558
3-2 0621 56 1-224 8-0 1-584
34 0-691 58 1-260

TABLE 3

Ula,

{ H ] 1
025 050 075 100
w/dy

15

Froure 13. Comparison of the present method with the calculation by the method of
characteristics for the case of shock-wave propagation through a duct with porous walls.
The ratio of pore area to wall area 77 = 0-1. Initial shock strength Uyfa, = 4. , Step-by-
step calculations; O, present method.
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6. Interaction of a rarefaction wave and a shock wave in one-dimen-
sional unsteady flow
A. Case of head-on collision

Until now, these problems for arbitrary waves were solved by the use of finite
difference methods. A discussion of these methods is given by Geiringer (1948).*
We discuss the case of interaction of a simple wave and a shock wave of arbitrary
strength (figure 14) in a duct of constant cross-section.t The flow behind the
shock wave is governed by the unsteady non-isentropic flow equations.

d

&--characteristic

0
a

{dx
JaY

—x

Ficure 14. Head-on collision of a shock wave and simple rarefaction wave.
Introducing a simple wave relation ahead of the shock wave
da, = —3(k—1)dV,, (6.1)

and taking into account the fact that «-characteristics cross the uniform flow
region behind the shock wave (see figure 13) (dr;, = 0), we get from equations
(2.9) the first-order linear ordinary differential equation

x(Mh) +3(k—1)
[1 - W] aw, = V), (6.2)
where from equations (2.4)—(2.7)
x(h) = k_;% (Wl_%) +a (6.3)

1
4 kW, +=
_ Oy 2 (1+ 1) ( +W3)

w2 (k+1)yay

(6.4)

where a;;; and £ are given by (2.4) and (3.4) as a function of W,. Table 4 contains
the values of x(W,) and ¥(W,) for k = 1-4.

* The numerical example in this paper is incorrect. The principal equations of motion
are not satisfied for the shock wave before interaction.

1 This case is a special case of §3 when 4 = const. and V, = V,(z, £), etc., but we solve
this here in a simpler manner.

23 Fluid Mech. 8
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The results for the special case of ¥; = 0 and W} = 4 are compared in figure 15
with a step-by-step method of calculation (method of characteristics) applied to
the basic non-linear partial differential equations. In this case the accuracy of
the present method is excellent. The numerical calculations are very difficult
because of the slow convergence of the finite difference method. Five iterations

w, x(W,) w(Wy) w, x(W)) w(W,)
1-0 1-00 3-32 4-6 2-92 1-58
1-2 1-11 2-82 4-8 3-10 1-58
1-4 1-21 2-50 5-0 3-22 1-57
1-6 1-32 2.28 5-2 3-33 1-56
1-8 1-43 2:12 54 3-44 1-55
2:0 1-54 2:00 56 3-56 1-54
2-2 1-65 1-90 5-8 3-68 1-54
2-4 1-76 1-84 6:0 3-80 1-53
2-6 1-86 1-77 6-2 3-92 1-53
2.8 1-98 1-72 6-4 4-03 1-52
3-0 2-08 1-69 6-6 415 1-52
3:2 2-19 1-66 6-8 4-27 1-51
34 2:30 1-64 7-0 4-38 1-51
3:6 2-41 1-63 7-2 4-51 1-50
3-8 2-52 1-62 74 463 1-50
4-0 2-64 1-61 7-6 4-74 1-49
4-2 2-76 1-60 7-8 4-86 1-49
44 2-88 1-59 8-0 4-98 1-48
TABLE 4
481
)
46
Ny
Y
)
I 44
4
42 -
40 ! | [ |
0 02 04 06 08
Vilay

Ficure 15. Comparison of the computation by use of the present method with the com-
putation by the method of characteristics for the case of head-on collision of a shock wave

of initial strength W$/al = 4 and a simple rarefaction wave.

O, present method.

@, Step-by-step calculations;
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were made in each step for obtaining points of intersection of the characteristics
a and the shock wave in the wave diagram; calculations in this case were then
accurate.
B. Case of the merging of a rarefaction and shock wave
We consider the interaction of a rarefaction wave and a shock wave propagating
in a duct of constant cross-section with a constant state ahead of the shock.
Behind the shock wave is a piston which initially has a constant velocity (see
figure 186). lt
i

Piston __j N

/’
P

a . ./ e
7

e // i

] Simple wave
> i

v
VY
q%// “..Shock wave
_—
g T s
H U
S g B - . )
= V=10 a=gq,

,,,,,,

caused by non-uniform piston motion.

In the present case we have variable boundary conditions given on the
arbitrary L-curve lying near the piston path. We assume that no reflexion wave
going back from the shock wave reaches this curve.

Along the given curve we have the simple wave relation

s1, = E%_%L = const.;
therefore dry, = dVy, = dv, (6.5)

where V,, is the variable velocity in the simple wave prescribed by the piston
motion. :
Using equation (2.9) we obtain

gla—_2E | _ _1,5a0 =
dU[R 2(]0_1)} = —3(U)dU = dV, (6.6)
where R and E are the functions of U given by equations (3.3) and (3.4).
After integrating we obtain the following equation
100 . =
5 ﬁow(U)dU = Vo= Vo (6.7)

Table 5 contains values of the integral in equation (6.7) for k = 1-4.
23-2
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In this case the entropy change plays an essential role; and the shock expansion
method does not give a good approximation. Equation (6.7) only enables the
calculation of a change in the shock-wave velocity caused by the piston-velocity
variation. To obtain the history of the shock-wave motion it is necessary to find
the shape of the characteristics c.

_ 10 I N A _ 100
U ~f_ Y(O)dU U —f_ylr(U)dU U —f_ w(U)dU
2 U, 2 U, 2 U,
1-2 —0-949 32 1:190 52 2-795
1-3 —0-806 3-3 1-274 53 2-872
14 —0-663 34 1-358 54 2:950
1-5 —0-543 35 1-441 55 3-027
16 —0-424 36 1-523 56 3-104
1-7 —0-314 3-7 1-605 57 3-181
1-8 —0-205 3-8 1-686 58 3-258
1-9 —0-102 39 1-767 59 3-335
20 0-000 4-0 1-848 6-0 3-412
2-1 0-098 41 1-928 6-1 3-488
2-2 0-196 4-2 2-008 62 3-565
2-3 0-290 4-3 2-088 63 3641
2-4 0-385 4-4 2-167 6-4 3-718
2-5 0-477 4-5 2-246 6-5 3-794
2-6 0-568 4-6 2:325 6-6 3:870
27 0-707 4-7 2404 6-7 3-947
2-8 0-847 4-8 2-483 6-8 4-023
2-9 0-923 4-9 2-561 6-9 4-069
30 1-020 50 2:639 7-0 4:115
31 1-105 51 2-717
TABLE 5

On the basis of the step-by-step calculations it is observed that the a-charac-
teristics are not very different from straight-lines.

Using these results we can calculate the change of the shock strength along
the tube axis. Comparisons of the calculations by the present method and the
finite difference method are given in figures 17-19 for various initial shock
strengths and various modes of piston motion.

7. Interaction of a rarefaction wave and a contact surface in one-
dimensional unsteady flow

The present method enables us to obtain in closed form the solution for the
interaction of a rarefaction wave and a contact surface in an unsteady one-
dimensional flow. In a similar way, the analogous problem in plane steady flow
can be solved. Until now, the closed form solution only enabled the calculation
of the finite value of the contact surface velocity (after interaction) to be done
(see Billington 1956). The full history of the contact surface motion was obtained
by step-by-step calculations (see Courant & Friedrichs 1948).
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We assume the flow to be isentropic on the two sides of the contact surface
(figure 20). The compatibility equations on the contact surface are

Vie= Zc::Vc’} (7.1)
P1re = Pac™ Pe
(no velocity and pressure jump take place on the contact surface).

AV ,]a,

~10

181
16

12
1-0
08
06
04

RIEN
| —

TR SN WA NS T TN SRS SR SO ERN T SO S
14 16 18 20 22 24 26 28 30 32 34 36 38 40

Ula,

(b)
Ficure 17. Comparison of the present method and calculations by the method of charac-
teristics for the case of a shock wave of initial strength U,/a, = 4 merging with a rare-
faction wave caused by a suddenly stopped piston. (@) Shock-wave velocity versus

piston velocity. (b) Change of the shock-wave propagation velocity, straight line a-
characteristics being agsumed. ———-, Step-by-atep method ; , present method.
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From the second relation (7.1) and the equation of isentropic flow, we get

ay, 2k, ey —1) _ (s eyfey—1) (7.9)
o a3 ’

where a}, aj are the initial values of the velocity of sound on the right and left
side of the contact surface.

Volas

xfx,

(b)

F1eure 18. Comparison of the present method and calculations by the method of charac-
teristics for the case of a shock wave of initial strength Uy/a, = 3 merging with a rare-
faction wave caused by suddenly stopped piston. (a) Shock velocity versus piston velocity.
(b) Change of the shock-wave propagation velocity, straight line «-characteristics being
assumed. ————, Step-by-step method; , present method.
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We have ds, = 0 for the transmitted wave (simple wave) and therefore along
the contact surface

Ge Yo 0 Ve (7.3)

Bi—1 2 -1 2

_06 -

AV]a,
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09
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Ulagy
{b)

Ficure 19. Comparison of the present method and calculations by the method of charac-
teristics for the case of a shock wave of initial strength Ug/a, = 4 merging with & rare-
faction wave caused by the retarded piston motion dV,/dt =W, = — 30(a,/t,). (a) Shock
velocity versus piston velocity. (b) Change of the shock-wave propagation velocity,
straight «-characteristics being assumed. -—-——-—, Step-by-step method; , present
method.
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For this case, in an analogous way to that leading to equation (2.9), we can write

the following eguation
av, da
dry, = 2c+k2 fcl = dry = dV],. (7.4)

Using equations (7.2) and (7.3) and integrating, we obtain the following

expression V- V‘c’+ a [V,— Vg(k " (fey—1)/(Fey~1) (BeyReq) Vo 75
2 " k,—1] 20} T (7.5)
)
/ i
/ /D/ | af = 29408
/ vl
3 2‘{.4 |Helium

k=167
Ficure 20. Time history of the interaction of a rarefaction wave with an air-helium
contact surface, computed by the present method with the assumption of straight
a-characteristics and by the method of characteristics. ————, Step-by-step calculations;
, present method.

This equation enables one to calculate the velocity of the contact surface for
a given change in the simple wave velocity V, = V,(z/t). Assuming, as before in
the case of the interaction of a rarefaction wave and a shock wave (see §6B),
that the a-characteristics are straight lines, we get the history of the contact
surface motion. The results of the calculation are compared with the results of
the method of characteristics and presented in figure 20 for an air-helium contact
surface.

8. Wave interactions in plane steady supersonic flow. The basic
expression for plane flow

In a way similar to that used for unsteady one-dimensional flow, we introduce
the analogous expression for plane flow. We make use of the equation in the
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characteristic direction by assuming that the curvature of the characteristics
is small (see Howarth 1953, p. 75):
oy 0y 00, e 0P _ (8.1)
0o vy 0a  pvh oo
Here, « and f are the characteristic and the orthogonal curvilinear co-ordinates,
respectively, p is the pressure, and v,, v, are the velocity components in the o

>
x

Figure 21. The boundary-value problem in plane steady supersonic flow.

and f directions, respectively. We take the a-co-ordinate along the C, charac-
teristic. The compatibility equations for an oblique shock wave can be written
in the form (see Stanjukovitch 1955)

—y %087
IIIV - ICOS(’)/—B)’ (8.2)
where 7y, 0 are defined in figure 22,
Pw _ 2k 5., k-1 g
. ——k+lMlsmy TE (8.3)
2 . k—1tan(y—0) }
T = Ml gindvy|o N T
| Misin y[k-i—l tany 1{. (8.4)
From these equations we obtain
COS Yy COS i
vm=%wwaE£:%sW%L (8.5)
Vi = W sinpg = (v, W), (8.6)
Pw =Y, W), (8.7)

where the Mach angle y, = sin—11/M,. We assume that we can express all the
parameters of the flow in terms of the velocity ¥ in front of the shock wave. The
boundary-value problem can then be presented in a similar way as in §2. We
assume that we are given an arbitrary curve L which is not a characteristic (it
can be the surface of a body, see figure 21), and that on this curve the boundary
conditions V = V,(z), p = p,(x) are given.
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As before in §2, we integrate the expression (8.1) along a C_ characteristic
between the L-line and the shock wave. Expressing the values on the shock wave
by equations (8.5), (8.6) and (8.7), we obtain

60 V) g, fglf(y, OIS

) —v, —J —“Zdv,+ dp = 0.
f(y 1) I o8 ”,9 g P'Ulze P

Applying the above equation to two neighbouring characteristics C,; and O 1y
(see figure 21), and subtracting one of these relations from the other, we obtain
in the limit as C,; - C_

BTy 11 R0y = v, =[] . Ty + 6, R) )

Dy

* [%;Ld”ﬂr [d(z—;)]mw% ) —vg, 1+ [ﬁj‘%]ww;w, AL/AR XA ALIA
- [/%%Ldp a2 [d(/%)]m [y, P —pr] = 0 (8.8)

\Qcharacteristics

AN

Ficure 22. Head-on collision of an oblique shock wave and
a Prandtl-Meyer expansion in steady plane flow.

Here values with the suffix m are the mean values in the interval of integration.
In the linearized case, all the parameters can be written as V =V, +¢,, ete.,
where €, < V7, etc. We see that the terms with mean values are small quantities
of the second order. Neglecting these, we obtain

va

£, V) dy+fi by, V) dVs— HW[sé;w, V) dy— (v, Vo) dVi]

v

f2

+&] vy, V) dy + ] ¥, V)dV—dv_ﬂ‘] dv +&] d
U%W w7 1) oy [P”%W V1(7> 1 17— Y% [vﬂL 77 I:pv/sz(ép;)

Va
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We shall henceforth apply equation (8.9) as an approximation for cases in which
linearization is not valid. This equation is analogous to equation (2.9) for
unsteady flow.

We shall now make use of this expression to solve the problems of the inter-
action of a Prandtl-Meyer expansion and an oblique shock wave, and plane
hypersonic flow around a body.

9. Head-on collision of an oblique shock wave and a Prandtl-Meyer
expansion

In a similar way to that for the unsteady wave interaction discussed in § 6, we
now apply the relation (8.9) to the head-on collision of a simple rarefaction wave
{(Prandtl-Meyer flow) and an oblique shock wave (figure 22).

In front of the shock wave, the following equations are satisfied by the Prandtl--

Meyer flow 2 2 2
Vips _ & (9.1)
2 k-1 k-1
Py () BED
Ao 02

0, = A/(%) tan— A/{k—_’:—l—(llfz—l)} —tan=1,/(M3—1). (9.3)

With these relations, we obtain from equation (8.9) the following expressions:

2 2 2
Mzazsin,l,w(a—ﬁ)@_COZ”W(kMP R Plﬁ“—")

dy _ By gt pk Byct] (9.
av &[Mz(ﬂsin/tw— k]“l
where :
a:ﬁ’, ﬁ=&Z, M =V_W’
a4 P1 aW
03, | k=T o, J@E-1) T M -1)
1— (M -1)
E+1
. k+1tan(y—0)
= 2 7. 1 e T
B, = 2} sin 'y[k_l tany 1],
k+1tan (y—0) k+1fsiny cosy
. tan (y —0) _ —
B, M{smuy[k_l tany l]+k—1[cosz(y—c9) tan (y —0) }, (9.5)
o, k41 1
- _ 2 2
B3 ﬂ[lsln yk——lta,n’ycosz(’}’—ﬁ)’
0P, 2k 2 i o -1
1 apl lisln y_k+1’
_ 1 8p2 _ 4k .
2= LML T 1 TS
190
= — Py _ 4k ——— M¥siny cosy. -

_p,577 kE+1
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Using the compatibility equations for the shock wave (8.2), (8.3) and (8.4),
and the equations (9.1) and (9.2), we can express all coefficients of equation (9.4)
as functions of y and ¥, alone. We then obtain a first-order ordinary differential
equation for y as a function of ;. Numerical calculations on the basis of equation

52°

51°

50°

49°t T~
32 34 36 M

i 1 1

i T T
30 305 31 315 32
A
Fiaure 23. Comparison of the present method with the method of characteristics for the
case of head-on collision of an oblique shock and a Prandtl-Meyer expansion.

(8.4) enable the computation of the shock-wave path without solving the partial
differential equations governing the flow on the back of the shock wave. Equation
(9.4) could be used to construct suitable tables.

A comparison of the results obtained with those of finite difference calculations
is presented in figure 23 for M} = 3, y* = 52°.

10. The shock wave in plane flow around a body

We consider the problem of the calculation of the shock-wave shape in plane
supersonic flow around a body (see figure 24). We assume the shock wave to be
attached (i.e. the nose angle of the body is smaller than the critical one). This
problem corresponds to the merging shock and rarefaction wave in one-dimen-
sional unsteady flow considered in § 6 B.

Taking the body surface as a curve L and assuming that there is no reflected
wave from the shock wave (a small reflexion is observed according to Egger’s
et al. (1955) paper), we can calculate all the parameters on the body surface from
the Prandtl-Meyer flow relations. From (8.9) we obtain

dy 2V sinpe;,
40 BV, sin g+ (py/py) Fy cos piy’
where B and F, are given by equations (9.5).

(10.1)
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Expressing all the parameters in the denominator of equation (10.1) in terms
of ¥ and in the numerator in terms of 6, we get the following equation

Y 2
f O(y)dy = f Y(6,) 6y, (10.2)
y* 6%,

where ®(y), U(f,) are functions given by the denominator and numerator in
equation (10.1), respectively.

The equation gives the variation of the shock-wave angle v as a function of
the body shape given by ;, taken on the same characteristic.
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FIGURE 24. Supersonic plane flow around a body (the calculations by the method of
characteristics and the shock expansion method are taken from KEggers ef al. 1955).
, Present method ; ——~—, method of characteristics ; —-—-— , shock-expansion method.

This method differs from the shock-expansion method, where all the para-
meters are assumed to be constant along the (', characteristics (i.e. a simple
wave). In the present solution 0 varies along the characteristics. These solutions
are the same only in the linearized case. However, the assumption that the O,
characteristics are straight lines was made in the calculation of the shock-wave
shape.

Figure 24 presents a comparison of the present theory, applied to a 109,
thick biconvex airfoil at M, = oo, with the results published in Egger’s et al. paper
obtained by the method of characteristics. (This comparison is not very accurate
because the figure drawn in their paper is not precise.)

An interesting problem is the influence of the entropy change on the flow
behind the shock wave. We obtain for oblique shock waves (in a similar way as
in § 3) the following formula

148 Msiny 1
cpdy  \2kM3sin?y—k+1 Msiny[(k—1) M3sin2y + 2]

} M, cosy. (10.3)
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For M, = e 1dS 2
C;E’;l = Ecot'y. (10.4:)

We then get for a given curvature of the shock wave a weak entropy gradient
behind the shock wave, and hence low vorticity for ¥ close to {7 (a detached
shock wave).

For the given profile, it follows from the above method of shock-shape cal-
culation that the higher the Mach number 4, the smaller is the curvature of
the shock wave. It therefore follows that the entropy change at higher Mach
numbers is smaller because of the smaller curvature of the shock wave.

11. Discussion

The results obtained in the present paper seem to be very useful for many cases
of non-uniform motion of shocks, detonation waves, and contact surfaces, but
the present method enables us to find only the position of the unknown dis-
continuity line. In the case of small disturbances, when the linearized approxi-
mation can be applied, it is possible to find the complete flow field. In the general
case, it is necessary for the determination of the flow field to solve the modified
Cauchy problem for the basic partial differential equations with the boundary
conditions given on the known discontinuity line.

The results obtained in this paper are very close to those obtained by step-by-
step calculations based on the method of characteristic, because the neglected
expressions containing mean values in equations (2.9) and (8.9) have small
contributions. This is because the curvature of the a-characteristics is small
in all the problems considered. The assumption of straight characteristics, which
was made in some of the cases, gives results which differ little for both methods.
This difference depends on the entropy change behind the shock wave.

In this paper the results obtained were compared with step-by-step calcula-
tions mainly for shock strengths U = 3, 4, 5, where the influence of entropy
changes is greatest. For weak and strong shocks the results are therefore better
than for shocks of medium strength.

The author wishes to express his gratitude to Mr P. Kijkowski and Mr S.
Pietrzyk for their help in carrying out the computations necessary for the ex-
amination of the present method; and also to the Fluid Mechanics Department of
the Institute of Basic Problems of the Polish Academy of Sciences for finanecing
this work.
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