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Calculations of the motion of non-uniform 
shock waves 

By JAN ROSCISZEWSKI 
Pierce Hall, Harvard University 

(Received 31 March 1959 and in revised form 30 January 1960) 

Problems of the propagation of shock waves and strong detonation waves through 
ducts of variable cross-section and ducts with porous walls, and the interaction 
of a rarefaction wave with a shock and a contact surface in one-dimensional 
unsteady, or two-dimensional steady, flow are solved using a simple rule. Tables 
enclosed in this paper permit efficient calculation of several problems of non- 
uniform shock motion. 

1. Introduction 
The aim of this paper is to give a simple method of analysing various situations 

involving the motion of non-uniform shock waves. The method is a modified 
form of the characteristic rule given by Whitham (1958), or the methods given 
by Chisnell(l957) and the author (1958). The rule developed in this paper enables 
one to treat many cases of the motion of non-uniform shock waves with different 
boundary conditions. Whitham’s characteristic rule is a special case of this 
method when a particular kind of boundary condition obtains. 

The problems treated represent boundary-value problems for a system of 
partial differential equations, in which one boundary condition is given on one 
line, and on another unknown line (the shock locus) a second boundary condition 
is defined by compatibility equations. The rule of this paper enables the behaviour 
of the shock wave to be calculated without solving the system of partial differ- 
ential equations governing the flow. 

Some of the problems discussed below have been solved by the use of methods 
differing from the present one. Some very practicable step-by-step methods for 
difference equations are discussed by Courant & Friedrichs (1948). The problem 
of the propagation of shock waves through a duct of variable cross-section was 
solved by Chisnell(1957), for the case when the gas in front of the shock is at  rest. 
Another method of solving this problem was given by the author (1958). In  the 
present paper, shock-wave propagation through ducts of variable cross-section, 
when a given non-uniform steady flow exists ahead of the shock wave, is 
discussed. 

The interaction of a simple wave and a shock wave was solved in a closed form 
by Friedrichs (1948) for the case of weak shocks where the entropy changes 
may be neglected. The influence, of a slow perturbation of the otherwise uniform 
piston motion on a shock wave, was discussed by Gundersen (1958). The present 
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method gives good results for arbitrary shock strength and arbitrary piston 
motion. 

A similar procedure applied to the case of plane hypersonic flow around a 
profile gives better results than the shock expansion method.* 

2. General relations for unsteady non-isentropic flow in ducts 

shock wave in a duct can be written in the characteristic form 
The system of equations governing unsteady non-isentropic flow behind a 

where a V  +-, s=--- a V  
Ic-1 2 Ic-1 2 ’  

r = - - -  

a denotes the velocity of sound, V the velocity of flow, a and p the curvilinear 
characteristic co-ordinates, S the specific entropy, and A the cross-section area 

FramE 1. The boundary-value problem for the system of equations (2.1) and (2.2). 

measured along plane, cylindrical or spherical surfaces for the cases of approxi- 
mately cylindrical, wedge-shaped or conical ducts, respectively. 

~a a = - + V -  2% at ax 
is the substantial derivative, and P and G are coefficients which express the 
entropy change of an element of the gas and the cross-outflow influence on the 
mass and momentum equations.? The boundary-value problem for the above 
system of differential equations can be set as follows. In  the (x, t)-plane, suppose 
the line L, not a characteristic, is given (see figure 1) and that on this line values 

* In an as yet unpublished paper the author ha.a applied similar methods to  the cal- 
culation of the shock-wave shape and pressure distribution for hypersonic flow around 
bodies of revolution. 

t See §5. 
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r = rL(t) ,  S = SL(t) and A = AL(z)  are known. On the right of a second un- 
known line (the shock wave) the state of the gas is prescribed by V, = V,(z), 
a, = al(x) and 8, = X,(z). Along this line compatibility conditions must be 
fulfilled. These conditions connect the parameters ahead of the shock wave 
(suffix 1) with parameters on the back of the shock wave (suffix W ) ,  and can be 
written in the form 

where 

2 

a, = & J [ 2 ( k -  1) (k Wf - &) + 6k-k2- 1 , 1 - 
(2.4) 

- 
77-V, , v,, - = %, etc., w, = - 
a1 a, 

(2.7) 

and U is the velocity of propagation of the shock wave. 
We suppose that A = A@) .  Then equation (2.1) can be written in the form 

Integrating equation (2.8) along a-characteristics (see figure 1) and expressing 
the values on the shock wave by equations (2.5) and (2.6), we obtain* 

+ j h A w - u c d l n A  Ind, 2('V+a) = 

where the suffix L refers to values of the parameters on the L-line. We now apply 
this expression to two neighbouring characteristics I and I1 (see figure 1). On 
subtracting these expressions, we obtain in the limit as characteristic I approaches 
characteristic 1L-f 

f+,( vl, v,, a,) dFl  -+f;,( v1, v,, a,) d q  +fiI( w,, v,, a,) da, - dr, - [--I 2(k--l)c, w 
a 

- W a L  + [dFIn, (aw - 
where the suffix m refers to the mean value in the interval considered. 

* J:r 5 dp = 0, etc., because d,4 = 0 along a-characteristics. 

From equation (2.6) we have & (  w,, S,) = 1. 

22-2 
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For the case when the variations of the flow behind the shock wave are small 
(the linearized case), all values can be written as A = A,  + eA, a = a, + eu, etc., 
where cA < A,, cue a,, etc. We can then omit in the above equation as small 
quantities of the second order all the terms in which the suffix m appears. Then 
we obtain 

a 
dlnA,-FLda,. (2.9) 

For the general case we may use the formula (2.9) as an approximation. 
The same procedure can be carried out with the formula analogous to (2.8) 

for the /3-characteristics. In  this manner we could obtain in addition the value 
of sL = aL/(k - 1) - $I$ along the L-line. The main difficulty is to find the points 
of intersection of corresponding characteristics with the W-line and the L-line. 
For this purpose an additional assumption is necessary (see Q 6B below). Often, 
instead of rL(t), the value of yL(t) (for example, the piston velocity) is given along 
the L-curve. In  this case, the value of rL(t)  depends on sL(t), which can be found 
only if the distribution of rL(t) is known. The situation is now more complicated. 
This kind of boundary condition occurs in the problem of variable piston motion 
behind the shock wave, when the reflected wave reaches the piston. This problem 
was solved by Gundersen (1958)) but only in the linearized approximation for 
small variations of the piston velocity when all the flow field can be found in 
closed form.* 

In the special case of boundary conditions such that rL = const., S, = const., 
A ,  = A ,  = const., we obtain from (2.9) Whitham’s characteristic rule. In the 
case of F = 0 and constant state ahead of the shock wave, this rule can be written 
in the form 

Whitham obtained this rule in a different way: he made use of the equation (2.1), 
in which he replaced derivatives in the characteristic direction by derivatives 
in the shock-wave direction {Ellay = a/at+ U(a/az)). He remarks that the slope 
of the a-characteristics is close to that of the shock-wave line (in the linearized 
approximation, they are the same). 

The same result can be obtained (see Chisnell 1957 and Rokciszewski 1958) by 
solving first the linearized case for small shock-wave velocity variations, and 
then, for the case of arbitrarily variable shock-wave velocity, changing the 
parameter in the linearized solution. The quasi-linearized solution obtained in 

* In  the general case it is necessary to make use of the expression analogous to (2.9) 
for P-characteristics. Unknown P-characteristics could be replaced by characteristics 
taken from the simple wave solution. I n  the analogous case discussed in the author’s 
unpublished work dealing with hypersonic flow around bodies of revolution, a similar 
method shows good accuracy. 
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this way is, in fact, the result of applying a series of local linearized solutions to 
the case where finite changes in shock-wave velocity takes place. 

The formula (2.9) will be applied below to many different cases of non-uniform 
shock-wave motion. The results will be compared diagrammatically with finite 
difference calculations obtained from the method of characteristics ; these com- 
parisons display the surprisingly good accuracy of the present method. 

A similar boundary-value problem will later be formulated for plane steady 
supersonic flow (see $8). 

3. Shock-wave propagation in a duct of non-uniform cross-section 
We shall now apply the rule to the case of shock-wave motion in a tube in 

which the cross-section is initially constant and then varies, and for which there 
is a given constant state ahead of the shock wave (see figure 2). In  particular, 
shock-wave propagation in ducts of variable cross-section, when the gas ahead of 
the shock wave is in steady motion or at rest with a variable temperature field, 
can be considered. 

We suppose that A = A(x)  and neglect the heat exchange and surface friction 
(F  = 0). In  the case considered, along the t-axis we have r = const. and A = A ,  
(see figure 2). Taking the t-axis as an L-line, we have dr, = 0, dA, = 0, as, = 0. 
Now taking a,, V,, S, as variable, and dividing equation (2.9) by dx, we obtain, 
using equation (2.7), 

4 
(3.4) 

1 4 F, 
cp 2 k W ; - k +  1 F,[(k- 1)  V ; + 2 ] ’  E = $bl( F,, S,) - = - 

For the given state ahead of the shock wave, d&/dx, da,/dx, and dS,/dx are 
known functions of x, and the equation (3.1) is a first-order differential equation 
for U = U(x) .  In  general this equation can be quite easily solved numerically; 
then we obtain the unknown shock wave without having to solve the partial 
differential equations. In  the special case of an approximately cylindrical duct 
and small variations of the values of the flow parameters ahead of the shock wave, 
all the coefficients of equation (3.1) can be taken, according to the linearized 
approximation, as constant. Therefore, a closed-form solution can be obtained 
for the shock-wave velocity change and the entire field on the back of the shock 
wave. The discussion of this solution was given in the author’s previous work 
(RoSeiszewski 1958). 
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In  the more general case when the time-dependent field ahead of the shock 
wave is given [V, = t;(s,t), a, = a,(x,t), S, = S,(x,t)] and, as before, d7, = 0, 
dA, = 0, dS, = 0, in place of d/dx on the right-hand side of equation (3.1) we 
must put a / a x + ( l / U ) ( a / a t ) .  We then obtain the equation for the shock-wave 
velocity in the form 

dU -= P ( U , x , t )  = P ( u Y x >IOxg). 
ax 

This equation can also easily be solved numerically. 

A =  const. I A +  const. , 

FIGURE 2. Propagation of a shock wave through a duct of variable cross-section, (a) sub- 
sonic flow behind the shock wave, (b )  supersonic flow behind the shock weve. 

The solution of the problem when time-dependent boundary conditions on 
curve L are given [T, = r,(t), A ,  = A,(t)] is also possible, and it is not very 
complicated when the curve L lies outside the domain of dependence bounded 
by the @-characteristic and the shock wave, i.e. when the condition on the 
L-curve does not depend on the shock-wave motion. 
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In  the special case when a, = a. = const., V, = 0, S, = const., using equations 
(2.3)-(2.6) we obtain from equation (3.1), 

A 2(k + 1)  k + l  In -- = - 
A0 (4 {2 (k  - 1) [kD2-  ( l/8a)] + 6k- k2 - 1)' 8- (li8)) 

where R and E are functions of 8 given by equations (3.3) and (3.4). 

i7 - 

1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 

-I:{ } d o  

-4.514 
- 3.563 
- 2.612 
- 1.999 
- 1.490 
- 1.053 
- 0.668 
- 0.322 

0.000 
0.294 
0.587 
0.845 
1.102 
1.330 
1.559 
1.767 
1.974 
2.160 
2-356 
2.537 
2-707 
2.870 
3.033 

3.5 3.186 
3.6 3.338 
3.7 3.481 
3.8 3.623 
3.9 3.757 
4.0 3.891 
4.1 4.017 
4.2 4.144 
4.3 4.265 
4.4 4.385 
4-5 4-501 
4.6 4.616 
4.7 4.727 
4.8 4.838 
4.9 4.944 
5.0 5.050 
5.1 5.152 
5.2 5.254 
5.3 5.352 
5.4 5.449 
5.5 5.543 
5.6 5.636 
5.7 5.727 

TABLE 1 

5.8 5.817 
5.9 5.854 
6.0 5.991 
6.1 6.076 
6.2 6.160 
6-3 6,242 
6.4 6.323 
6.5 6.402 
6.6 6.482 
6.7 6.559 
6.8 6.635 
6.9 6.710 
7-0 6.785 
7.1 6.858 
7.2 6.930 
7.3 7.001 
7.4 7.07 1 
7-5 7-140 
7.6 7.208 
7.7 7.275 
7.8 7.341 
7.9 7.407 
8.0 7.472 

In  the limiting case when + 00 we obtain the asymptotic formula 

In fact, equation (3.5) is the Chisnell answer presented in another form. Some 
numerical differences between Chisnell's tables and present formula are, however, 
found (see the converging cylindrical wave calculation). Values of the integral 
in (3.5) are given in table 1 for k = 1.4. 

Equation (3.4) enables us to examine the influence of entropy changes on 
shock-wave motion. The coefficient depends on 

-____ 1 d(S,-S,) = E ,  
c p  dW, 
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where E given by equation (3.4) expresses the entropy change influence. When 
wl = 1 (very weak shock wave) and wl = 00 (very strong shock wave) E vanishes. 
This means that entropy changes for hypersonic shock motion can be neglected. 
Table 2 gives values of E as a function of W, for k = 1.4. 

The results of calculations by the use of Table 1 are compared with step-by- 
step calculations* applied to the basic differential equations for various duct 
shapes and various initial shock strengths (figures 3-10). In  special cases these 

W 0 1.5 2 3 4 5 6 8 10 15 20 00 

E 0 0.097 0.185 0.246 0.241 0.221 0.198 0.161 0.123 0.092 0.0714 0 

TABLE 2 

r 

42 

3.8 

d 36 

3.4 

3.2 

5 

3.0 

2.4 

2.2 

2.0 
0 01 02 0.3 04 0.5 06 0 7  08 0.9 1.0 

./%I 

FIGURE 3. Comparison of the present method with step-by-step calculations by the 
method of characteristics for the cam of shock-wave propagation through a duct of vary- 
ing cross-section area given by A/Ao = e2(z’@) (divergent duct) and initial shock strengths 
(a) Uo/a, = 5 and ( b )  U,/a, = 3. The shock is assumed plane. ---- , Step-by-step calcula- 
tion; - , present method. 

* This calculation WM based on the method of characteristics. The accuracy was checked 
by taking some mean characteristics which give the errors lying within the limits of 
accuracy of the wave diagram calculations. 
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results are compared (figure 9) with Payne’s (1957) calculations for a cylindrical 
convergent wave. In  this case, because of other boundary conditions (in Payne’s 
work V (  I ,  t )  + const.) Payne’s results differ from those given by the present 
method and from those given by finite difference calculations by the method of 

xlxo 

FIGURE 4. Comparison of the present met,hod with calculations by the method of charac- 
teristics for the case of shock-wave propagation through a duct varying cross-section area 
given by BIB, = e2(2ito) (divergent duct) and initial shock strength Uo/u, = 7.  The coin- 
parison is made for bot,h a plane and spherical shock wave, originating at x = 0, for 
./.To > 0.1. ---- , Step-by-step calculations; -, present method. 

4 
1.6 

1.4 
e 

3 

5 
1.2 

1 .o .. 

0 0.3 

FIGURE 5. Comparison of the present method with calculations by the method of charac- 
teristics for the case of shock-wave propagation through a duct with 4/A,  = e(=jTa) (diver- 
gent duct) and initial shock strength U,/a, = 1.5. ---- , Step-by-step calculations; 
-, present theory. 
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characteristics. The results are not strictly insensitive to the initial conditions, 
see Whitham (1958). Chisnell’s tables show some disagreement with the present 
tables, and they give results very close to Payne’s calculations for different 

A 
3.3 

3.2 - 

31 - 

3.0 - 

2.9 

2.8 

2.7 

2.6 - 

- 

cp - 

- 

- 

4 x 0  

FIGURE 6. Comparison of the present method with calculations by the method of charac- 

teristics for the case of shock wave propagation througha duct with- = exp 

(convergent duct) and initial shock strength Uo/ao = 2.5. ----, Step-by-step calculations ; 
-, present method. 

A [-(:+a] A0 

1.9 t 

4x0 

FIGURE 7. Comparison of the present method with calculations by the method of charm- 

teristics for the case of shock-wave propagation through a duct with - = exp 

(convergent duct) and initial shock strength Uo/a, = 1.3. 
x , present theory. 

A [-(:+$)I A0 
0 ,  Step-by-step calculations; 

boundary conditions. For other cases calculated in this paper, Chisnell’s tables 
also show some deviations. Results of the comparison of the present method with 
experimental results and calculations by Hertzberg & Kantrowitz (1950) are 
given in figure 10. 
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4. Propagation of strong detonation wave through ducts of non- 
uniform cross-section 

Here we shall be concerned with the propagation of a strong detonation wave, 
i.e. the detonation wave described by the points on the Hugoniot curve lying 
above the Chapman-Jouguet point (see Courant & Friedrichs 1948). Such a 
detonation wave can be obtained by additional compression behind the detona- 
tion wave, for example, by piston motion or by the propagation of the Chapman- 

t 

0 0.1 0.2 0.3 0 4  0.5 0.6 0.7 0.8 

x/xo 
FIGURE 8. Comparison of the present method with calcdations by the method of charm- 
teristics for the caae of a very strong shock wave (V,,/a,, = 20) propagating through a duct 
of variable cross-section A/Ao = ea(*’*). The gas is treated aa ideal with k = 1.4. 0,  Step- 
by-step calculations; 0,  present method. 

Jouguet detonation wave through a duct of suddenly convergent cross-section. 
We assume the strong detonation wave to be propagated through a duct of 
initially constant cross-section, which at some point changes into a duct with 
variable cross-section. The gas ahead of the detonation wave is assumed to be 
at rest with a constant velocity of sound. 

In  a divergent duct the velocity of a detonation wave can be decreased only 
to that corresponding to the Chapman-Jouguet wave. The only difference 
between the solution of the previous case and the present one is in the different 
compatibility equations for shock and detonation waves. 

We assume different values of k = cJc, in front (suffix 1) and at the back 
(suffix W )  of the detonation wave. 
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- 
0.5 1 .o 

XI% 
FIGURE 9. Comparison of the present method with calculations by the method of charm- 
teristics (assuming V(1, t )  = const.) and Payne’s calculations with different boundary 
conditions (V(  1, t )  .I. const.). -----, Step-by-step calculations with boundary condition 
V (  1, t )  = const. ; ---- , finite difference calculations by Payne V(1, t )  + const.; -, 
present method; --, Chisnell (published in Payne’s work). 

y//,,,/, hw “ ‘ z,,,, 
i . 

X 

298 ‘0 

FIGURE 10. Comparison of the present method with Hertzberg & Kantrowitz’s experi- 
mental curve and their calculations by the method of characteristics. 0 ,  Experimental 
points (Hertzberg-Kantrowitz) ; ---- , finite difference calculations (Hertzberg-Kantro- 
witz) ; -, present method. 
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The equations of conservation of mass, momentum and energy (see Courant 
& Friedrichs 1948) give 

I 
1.0 2.0 3.0 4.0 5.0 6 0  70 

where 
Also, 

= U/ao and V = Vw/ao; Q is the heat released by the combustion process. 

a = J(k& 7) (7+&)], (4-2) 

where E = aw/ao. 

From equation (2.9) ( d q  = da, = dX, = 0 )  we obtain 

A 

where the derivatives in equation (4.4) can be calculated by the use of equations 
(4.1), (4.2) and (4.3). 

Comparison of the calculations by the use of the present method and step- 
by-step calculations are given in figure 11 for k, = 1.4, k, = 1.3 and &/a; = 28.9. 
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5. Shock-wave propagation through a duct with porous walls 
In  this section we consider the shock-wave attenuation due to the cross- 

outflow through porous walls of the duct. We take a cylindrical duct and we 
assume the cross mass flow nd,Zp;ii to be small in comparison with p B A ,  where w 
is the cross-flow velocity, 7 is the ratio of the area of the pores to the area of 
the wall, and U = "7. 

I 

X 

FIGURE 12. Flow induced by shock-wave propagation through a duct with 
porous walls (q << 1). (a) The case Vo< a"; (a) the cam VO> ao. 

We apply the basic mechanical equations to the ideal flow through the duct 
with the porous wall (figure 12). We assume all parameters to be constant in the 
given cross-section. The continuity equation is 

For the momentum equation, we assume that the cross-stream has no momen- 
tum in the direction of the axis of the tube. Then we have 
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or, using equation (5.1) for xI -+ x I Iy  we obtain 

DV l a p  4 v v  -+-- =-- 
Dt pax  do * 

The energy equation is 

or, using equations (5.1) and (5.2) for xII -+ x I ,  we get 

We shall calculate the velocity of the cross-flow by assuming quasi-steady flow. 
This is based on the fact that due to a sudden change in the cross-section the local 
derivatives (in the equation of motion), are small in comparison with the con- 
vective terms. Then we apply the Bernoulli equation and assume the cross-flow 
to be isentropic 

where pa = const. is the outside pressure, p = p(x ,  t )  is the pressure in the duct, 
and 5 is the loss coefficient. 

The pressure in this formula can be calculated from 

Taking into account the three equations of motion (5.1), (5.2),  (5.3) and equa- 
tion (5.4) we find the coefficients in equations (2.1) and (2.2) which express the 
entropy change and the cross-mass flow influence 

G = - T J { & [ l - ( , )  pa  (k-1)lk Y 

(5.7) 
where M = V/a .  

We obtain from (2.9), where we substitute da,  = 0 (the t-axis is taken as the 
L-curve) and 
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where 

E and R are given by (3.3) and (3.4), respectively. The integral of the left-hand 
side of equation (5.8) is given in table 3 for k = 1.4 and g = 1. 

In  figure 13 a comparison of the present method with the numerical method 
of characteristics is given for 7 = 0.1 and Do = 4. In  this case the numerical 
method was not very accurate. 

1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 

- 2.775 
- 0.900 
- 0,425 
- 0.172 

0~000 
0.144 
0.264 
0.367 
0.460 
0.544 
0.621 
0.691 

3.6 
3.8 
4.0 
4.2 
4.4 
4.6 
4.8 
5.0 
5-2 
5.4 
5.6 
5.8 

- 

0.755 
0.814 
0.870 
0.922 
0.972 
1.019 
1.064 
1.107 
1.148 
1-187 
1.224 
1.260 

TABLE 3 

B 

6.0 
6.2 
6.4 
6.6 
6.8 
7.0 
7.2 
7.4 
7.6 
7.8 
8.0 

- 
u dU 

su, Bo 
1.295 
1.328 
1.360 
1.391 
1.421 
1-450 
1.478 
1.506 
1.532 
1.558 
1-584 

I 

1.5 I I I 1 - 
0.25 0-50 075 1 -00 

"Id0 

FIGURE 13. Comparison of the present method with the calculation by the method of 
characteristics for the case of shock-wave propagation through a duct with porous walls. 
The ratio of pore area to wall area 7 = 0.1. Initial shock strength U,/ao = 4. 0, Step-by- 
step calculations; 0 ,  present method. 



Calcuzations of the motion of non-uniform shock waves 353 

6. Interaction of a rarefaction wave and a shock wave in one-dimen- 
sional unsteady flow 

A. Case of head-on collision 

Until now, these problems for arbitrary waves were solved by the use of finite 
difference methods. A discussion of these methods is given by Geiringer (1948).* 
We discuss the case of interaction of a simple wave and a shock wave of arbitrary 
strength (figure 14) in a duct of constant cross-section.? The flow behind the 
shock wave is governed by the unsteady non-isentropic flow equations. 

FIGURE 14. Head-on collision of a shock wave and simple rarefaction wave. 

Introducing a simple wave relation ahead of the shock wave 

da, = - *(Ic - 1) d q ,  (6.1) 

and taking into account the fact that a-characteristics cross the uniform flow 
region behind the shock wave (see figure 13) (dr, = 0 ) ,  we get from equations 
(2.9) the first-order linear ordinary differential equation 

where from equations (2.4)-(2.7) 

k - 1  -- 1 x ( m  = m( w,-= &) +zw, 

where 
the values of ~ ( w , )  and $(w,) for Ic = 1.4. 

and E are given by (2.4) and (3.4) as a function of w,. Table 4 contains 

* The numerical example in this paper is incorrect. The principal equations of motion 

t This case is a special case of $ 3  when A = const. and Vl = Vl(z, t ) ,  etc., but we solve 
are not satisfied for the shock wave before interaction. 

this here in a simpler manner. 

23 Fluid Mech. 8 
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The results for the special case of V, = 0 and v! = 4 are compared in figure 15 
with a step-by-step method of calculation (method of characteristics) applied to 
the basic non-linear partial differential equations. In  this case the accuracy of 
the present method is excellent. The numerical calculations are very difficult 
because of the slow convergence of the finite difference method. Five iterations 

Wl X(V1) 
1.0 1.00 
1.2 1.11 
1.4 1.21 
1.6 1.32 
1.8 1.43 
2.0 1-54 
2.2 1.65 
2.4 1.76 
2.6 1.86 
2.8 1.98 
3.0 2.08 
3.2 2-19 
3.4 2.30 
3.6 2.41 
3-8 2.52 
4.0 2.64 
4.2 2.76 
4.4 2.88 

1c.( W l )  Wl 
3.32 4.6 
2.82 4.8 
2.50 5.0 
2.28 5.2 
2.12 5.4 
2.00 5.6 
1.90 5.8 
1.84 6.0 
1.77 6.2 
1.72 6.4 
1.69 6.6 
1-66 6.8 
1.64 7.0 
1.63 7.2 
1.62 7.4 
1.61 7.6 
1-60 7.8 
1.59 8.0 

TABLE 4 

X m l )  
2.92 
3.10 
3.22 
3-33 
3.44 
3.56 
3.68 
3.80 
3.92 
4.03 
4.15 
4-27 
4.38 
4.51 
4.63 
4-74 
4.86 
4-98 

VWl) 
1.58 
1.58 
1.57 
1-56 
1.55 
1.54 
1.54 
1.53 
1-53 
1.52 
1.52 
1.51 
1.51 
1.50 
1.50 
1.49 
1-49 
1.48 

I d 
0 0 2  0 4  0 6  0 8  

40 

VJa1 

FIGURE 15. Comparison of the computation by use of the present method with the com- 
putation by the method of characteristics for the case of head-on collision of a shock wave 
of initial strength Wt/ay = 4 and a simple rarefaction wave. 0 ,  Step-by-step calculations; 
0,  present method. 
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were made in each step for obtaining points of intersection of the characteristics 
01 and the shock wave in the wave diagram; calculations in this case were then 
accurate. 

B. Case of the merging of a rarefaction and shock wave 

We consider the interaction of a rarefaction wave and a shock wave propagating 
in a duct of constant cross-section with a constant state ahead of the shock. 
Behind the shock wave is a piston which initially has a constant velocity (see 
figure 16). 

. , . . . .  . I , I , , , , . 
Y 

I ,  . . I I . ,,,,,. 

FIGURE 16. Merging of a shock wave and E rarefaction wave 
caused by non-uniform piston motion. 

In  the present case we have variable boundary conditions given on the 
arbitrary L-curve lying near the piston path. We assume that no reflexion wave 
going back from the shock wave reaches this curve. 

Along the given curve we have the simple wave relation 

8, = __-- a~ ‘L = const.; 
k - 1  2 

therefore dr, = d V ,  = d&, (6 .5)  

where V, is the variable velocity in the simple wave prescribed by the piston 
motion. 

Using equation (2.9) we obtain 

where R and E are the functions of 0 given by equations (3.3) and (3.4). 
After integrating we obtain the following equation 

Table 5 contains values of the integral in equation (6.7) for lc = 1.4. 
23-2 
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In  this case the entropy change plays an essential role; and the shock expansion 
method does not give a good approximation. Equation (6.7) only enables the 
calculation of a change in the shock-wave velocity caused by the piston-velocity 
variation. To obtain the history of the shock-wave motion it is necessary to find 
the shape of the characteristics a. 

1.2 - 0.949 
1-3 - 0.806 
1.4 - 0.663 
1.5 - 0.543 
1.6 - 0.424 
1.7 - 0.314 
1.8 - 0.205 
1.9 - 0.102 
2.0 0,000 
2.1 0.098 
2.2 0.196 
2.3 0.290 
2.4 0.385 
2.5 0.477 
2.6 0-568 
2.7 0.707 
2.8 0.847 
2.9 0.923 
3.0 1.020 
3.1 1.105 

3.2 1.190 
3.3 1.274 
3.4 1.358 
3.5 1.441 
3.6 1.523 
3.7 1.605 
3.8 1.686 
3.9 1.767 
4.0 1.848 
4.1 1.928 
4.2 2-008 
4.3 2.088 
4.4 2.167 
4.5 2.246 
4.6 2.325 
4.7 2.404 
4.8 2.483 
4.9 2.561 
5.0 2.639 
5.1 2.717 

TABLE 5 

B 

5.2 
5.3 
5.4 
5.5 
5-6 
5.7 
5.8 
5.9 
6.0 
6.1 
6.2 
6.3 
6.4 
6.5 
6.6 
6.7 
6.8 
6.9 
7.0 

2.795 
2.872 
2.950 
3.027 
3.104 
3.181 
3-258 
3.335 
3.412 
3.488 
3.565 
3.641 
3.718 
3.794 
3.870 
3.947 
4.023 
4.069 
4.115 

On the basis of the step-by-step calculations it is observed that the a-charac- 
teristics are not very different from straight-lines. 

Using these results we can calculate the change of the shock strength along 
the tube axis. Comparisons of the calculations by the present method and the 
finite difference method are given in figures 17-19 for various initial shock 
strengths and various modes of piston motion. 

7. Interaction of a rarefaction wave and a contact surface in one- 
dimensional unsteady flow 

The present method enables us to obtain in closed form the solution for the 
interaction of a rarefaction wave and a contact surface in an unsteady one- 
dimensional flow. In  a similar way, the analogous problem in plane steady flow 
can be solved. Until now, the closed form solution only enabled the calculation 
of the finite value of the contact surface velocity (after interaction) to be done 
(see Billington 1956). The full history of the contact surface motion was obtained 
by step-by-step calculations (see Courant & Friedrichs 1948). 
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We assume the flow to be isentropic on the two sides of the contact surface 
(figure 20). The compatibility equations on the contact surface are 

P l C  = PZc= Pc 
(no velocity and pressure jump take place on the contact surface). 

I I I I I I k 
1 -5 2.0 25 30 3.5 40 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 ,  

1.4 1.6 1.8 20 22  24 '26 28 3-0 32  3.4 3 6  38 40 

Ulao 
( b )  

FIUURE 17. Comparison of the present method and calculations by the method of charac- 
teristics for the case of a shock wave of initial strength U,,/ao = 4 merging with a rare- 
faction wave caused by a suddenly stopped piston. (a )  Shock-wave velocity versus 
piston velocity. (b) Change of the shock-wave propagation velocity, straight line a- 
characteristics being assumed. ---- , Step-by-step method; -, present method. 
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From the second relation (7.1) and the equation of isentropic flow, we get 

where a!, a; are the initial values of the velocity of sound on the right and left 
side of the contact surface. 

XIXO 

( b )  

FIQTJFCE 18. Comparison of the present method and calculations by the method of charac- 
teristics for the case of a shock wave of initial strength U,/uo = 3 merging with a rare- 
faction wave caused by suddenly stopped piston. (a)  Shock velocity versus piston velocity. 
( b )  Change of the shock-wave propagation velocity, straight line a-characteristics being 
assumed. ----, Step-by-step method; -, present method. 
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We have ds, = 0 for the transmitted wave (simple wave) and therefore along 
the contact surface 

A 

1.3 

1.2 

1.1 

-5 1.0 ti 

0 9  

08 

0 7  

0 6  

a,, v, 4 c  v: 
k,-1 3 k , - 1  2 '  

- 

- 

- 
- 
- 

- 

- 
- 

(7.3) 

- 0 8  

-06 
d s- 
a 

- 0 4  

-02 

L I I I I I I I -  

2.8 3.0 3.2 3.4 3 6  3-8 40 
Ula0 

( b )  

FIUURE 19. Comparison of the present method and calculations by the method of charac- 
teristics for the case of a shock wave of initial strength U,/a, = 4 merging with ~b rare- 
faction wave caused by the retarded piston motion dV&t = W, = - 30(ao/to). (a)  Shock 
velocity versus piston velocity. ( b )  Change of the shock-wave propagation velocity, 
straight a-characteristics being assumed. ---- , Step-by-step method; - , present 
method. 
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For this case, in an analogous way to that leading to equation (2.9)) we can write 
the following equation 

dV da dr = - c + J  =dr ,  = . 
2 c -  2 Ic,- 1 dV, (7.4) 

Using equations (7.2) and (7.3) and integrating, we obtain the following 

/’ ,’ 

FIGURE 20. Time history of the interaction of a rarefaction wave with an air-helium 
contact surface, computed by the present method with the assumption of straight 
a-characteristics and by the method of characteristics. ---- , Step-by-step calculations; 
-, present method. 

This equation enables one to calculate the velocity of the contact surface for 
a given change in the simple wave velocity V, = &(x/t) .  Assuming, as before in 
the case of the interaction of a rarefaction wave and a shock wave (see 5 6B), 
that the a-characteristics are straight lines, we get the history of the contact 
surface motion. The results of the calculation are compared with the results of 
the method of characteristics and presented in figure 20 for an air-helium contact 
surface. 

8. Wave interactions in plane steady supersonic flow. The basic 
expression for plane flow 

In  a way similar to that used for unsteady one-dimensional flow, we introduce 
the analogous expression for plane flow. We make use of the equation in the 
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characteristic direction by assuming that the curvature of the characteristics 
is small (see Howarth 1953, p. 75): 

Here, a and p are the characteristic and the orthogonal curvilinear co-ordinates, 
respectively, p is the pressure, and v,, up are the velocity components in the u 

X 

FIGURE 21. The boundary-value problem in plane steady supersonic flow. 

and /3 directions, respectively. We take the a-co-ordinate along the C, charac- 
teristic. The compatibility equations for an oblique shock wave can be written 
in the form (see Stanjukovitch 1955) 

where y, 8 are defined in figure 22, 

From these equations we obtain 
cosy cosp2 

vaw = Bw cospu, = v, = f (Y, K), cos ( y  - 8 )  

vpw = T&sinpu, = $(y,V,), (8.6) 

Pw = W,V,), (8.7) 

where the Mach angle ,u2 = sin-1 l/M2. We assume that we can express all the 
parameters of the flow in terms of the velocity V, in front of the shock wave. The 
boundary-value problem can then be presented in a similar way as in $ 2 .  We 
assume that we are given an arbitrary curve L which is not a characteristic (it 
can be the surface of a body, see figure 21), and that on this curve the boundary 
conditions B = B'(x), p = pL(x)  are given. 
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As before in 3 2 ,  we integrate the expression (8.1) along a C, characteristic 
between the L-line and the shock wave. Expressing the values on the shock wave 
by equations (8.5), (8.6) and (8.7), we obtain 

Applying the above equation to two neighbouring characteristics C,, and C+II 
(see figure 21), and subtracting one of these relations from the other, we obtain 
in the limit as C,, -+ C,,, 

m 

FIGURE 22. Head-on collision of an oblique shock wave and 
a Prandtl-Meyer expansion in steady plane flow. 

Here values with the suffix m are the mean values in the interval of integration. 
In  the linearized case, all the parameters can be written as V = V'+E,, etc., 
where ew < V', etc. We see that the terms with mean values are small quantities 
of the second order. Neglecting these, we obtain 
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We shall henceforth apply equation (8.9) as an approximation for cases in which 
linearization is not valid. This equation is analogous to equation (2.9) for 
unsteady flow. 

We shall now make use of this expression to solve the problems of the inter- 
action of a Prandtl-Meyer expansion and an oblique shock wave, and plane 
hypersonic flow around a body. 

9. Head-on collision of an oblique shock wave and a Prandtl-Meyer 
expansion 

In  a similar way to that for the unsteady wave interaction discussed in 3 6, we 
now apply the relation (8.9) to the head-on collision of a simple rarefaction wave 
(Prandtl-Meyer flow) and an oblique shock wave (figure 22). 

In  front of the shock wave, the following equations are satisfied by the Prandtl- 

With these relations, we obtain from equation (8.9) the following expressions: 

ao 1 Ml 1 
aiwl G = L =  

k - 1  ~ M ~ ) - M ~ J ( M : - ~ ) ’  
k + l  

k+ 1 tan(y-8) 

1 - ~ (N:  - 1) 

B, = 2Nl sin2 y 

-tan(y-8) ) 

k- 1 tan y I) 
k + l  1 
k - l t a n y  cos2(y--O)’ 

B, = - M: sin2 y- 

aP2 2k k - 1  
apl k + i  k+ 1 ’  

1 ap2 41~ 
plaM, k + l  

pl = -~ = ----M:sin2y-- 

P2 = -~ = ----Mlsin2y, 

’ (9.5) 
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Using the compatibility equations for the shock wave (8 .2) ,  (8.3) and (8.4), 
and the equations (9.1) and (9.2), we can express all coefficients of equation (9.4) 
as functions of y and V, alone. We then obtain a first-order ordinary differential 
equation for y as a function of V,. Numerical calculations on the basis of equation 

4 
52 

51' 

Y 

50 ' 

49 O 

Present method 

3.2 3.4 3.6 M1 
I I I 

I I I I 

3.0 3.05 3.1 3.15 3.2 
v, 

FIGURE 23. Comparison of the present method with the method of characteristics for the 
cme of head-on collision of an oblique shock and a Prandtl-Meyer expansion. 

(8.4) enable the computation of the shock-wave path without solving the partial 
differential equations governing the flow on the back of the shock wave. Equation 
(9.4) could be used to construct suitable tables. 

A comparison of the results obtained with those of finite difference calculations 
is presented in figure 23 for MY = 3, yo = 52". 

10. The shock wave in plane flow around a body 
We consider the problem of the calculation of the shock-wave shape in plane 

supersonic flow around a body (see figure 24). We assume the shock wave to be 
attached (i.e. the nose angle of the body is smaller than the critical one). This 
problem corresponds to the merging shock and rarefaction wave in one-dimen- 
sional unsteady flow considered in 3 6B. 

Taking the body surface as a curve L and assuming that there is no reflected 
wave from the shock wave (a small reflexion is observed according to Egger's 
et al. (1955) paper), we can calculate all the parameters on the body surface from 
the Prandtl-Meyer flow relations. From (8.9) we obtain 

(10.1) 

where B and P3 are given by equations (9.5). 
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Expressing all the parameters in the denominator of equation (10.1) in terms 
of y and in the numerator in terms of 8, we get the following equation 

(10.2) 

where @(y), D(OL) are functions given by the denominator and numerator in 
equation (10.1), respectively. 

The equation gives the variation of the shock-wave angle y as a function of 
the body shape given by BL, taken on the same characteristic. 

X I C  

FIGURE 24. Supersonic plane flow around a body (the calculations by the method of 
characteristics and the shock expansion method are taken from Eggers et ul. 1955). 
-,Present method; ---- , method of characteristics; , shock-expansion method. 

This method differs from the shock-expansion method, where all the para- 
meters are assumed to be constant along the C+ characteristics (i.e. a simple 
wave). In  the present solution 8 varies along the characteristics. These solutions 
are the same only in the linearized case. However, the assumption that the C ,  
characteristics are straight lines was made in the calculation of the shock-wave 
shape. 

Figure 24 presents a comparison of the present theory, applied to a 10% 
thick biconvex airfoil at M, = co, with the results published in Egger’s et al. paper 
obtained by the method of characteristics. (This comparison is not very accurate 
because the figure drawn in their paper is not precise.) 

An interesting problem is the influence of the entropy change on the flow 
behind the shock wave. We obtain for oblique shock waves (in a similar way as 
in 5 3) the following formula 

1 
(10.3) 

M,sin y 
2kM2, sin2 y - k + 1 -MI sin y [ ( k  - 1) Mf sin27 + 21) M1cOs 
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For MI = co 
1 as 2 

= -cot y. _ _  
CPdY 

(10.4) 

We then get for a given curvature of the shock wave a weak entropy gradient 
behind the shock wave, and hence low vorticity for y close to &r (a detached 
shock wave). 

For the given profile, it follows from the above method of shock-shape cal- 
culation that the higher the Mach number MI, the smaller is the curvature of 
the shock wave. It therefore follows that the entropy change at  higher Mach 
numbers is smaller because of the smaller curvature of the shock wave. 

11. Discussion 
The results obtained in the present paper seem to be very useful for many cases 

of non-uniform motion of shocks, detonation waves, and contact surfaces, but 
the present method enables us to find only the position of the unknown dis- 
continuity line. In  the case of small disturbances, when the linearized approxi- 
mation can be applied, it  is possible to find the complete flow field. In  the general 
case, it  is necessary for the determination of the flow field to solve the modified 
Cauchy problem for the basic partial differential equations with the boundary 
conditions given on the known discontinuity line. 

The results obtained in this paper are very close to those obtained by step-by- 
step calculations based on the method of characteristic, because the neglected 
expressions containing mean values in equations (2.9) and (8.9) have small 
contributions. This is because the curvature of the a-characteristics is small 
in all the problems considered. The assumption of straight characteristics, which 
was made in some of the cases, gives results which differ little for both methods. 
This difference depends on the entropy change behind the shock wave. 

In  this paper the results obtained were compared with step-by-step calcula- 
tions mainly for shock strengths = 3, 4, 5, where the influence of entropy 
changes is greatest. For weak and strong shocks the results are therefore better 
than for shocks of medium strength. 

The author wishes to express his gratitude to Mr P. Kijkowski and Mr S. 
Pietrzyk for their help in carrying out the computations necessary for the ex- 
amination of the present method; and also to the Fluid Mechanics Department of 
the Institute of Basic Problems of the Polish Academy of Sciences for financing 
this work. 
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